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Abstract

The integro-differential equation governing the combined conduction and radiation heat transfer in a gray medium

bounded by two infinite coaxial cylindrical surfaces is solved numerically to analyse the effect of radiation in transient

hot-wire measurements in porous thermal insulations. The influences of the extinction coefficient, the emissivity of the

wire and the heating power are studied. It is found that the hot-wire method works accurately only in cases where

the extinction coefficient exceeds a minimum value which increases with the temperature. The calculated results confirm

the linear relationship between measured thermal conductivities and the heating power. The problem of reference

temperature for the measured thermal conductivity is also discussed in this work.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The transient hot-wire method described by Healy

et al. [1] has been developed rapidly since many years.

Generally, this method has the advantages of conve-

nience, accuracy and short duration of the measurement.

It has been widely used for determination of the thermal

conductivity of fluids and solids. The basic method,

however, is restricted to cases of exclusively conductive

heat transfer without any convection and no emission,

absorption and scattering of radiation. Such substances

are either completely opaque or ideally transparent.

In cases of reduced transparency of the medium,

there is an additional transport due to radiation which is

emitted at any location inside the medium and absorbed

again after repeated scattering within a certain free mean

path, i.e. the penetration length. This is the inverse of the
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extinction coefficient as the sum of the coefficients for

absorption and scattering. Heat transfer is now a cou-

pled process of conduction and radiation which can be

described by means of the effective thermal conductivity

including both effects. This however is only allowed if

radiation is a local, diffusion-like process where the

extinction coefficient is large enough, i.e. in optically

dense materials. In such cases the hot-wire method can

be applied and the effective thermal conductivity is

yielded as the sum of two contributions namely one term

for thermal conduction (i.e. the thermal conductivity)

and a second one for radiation (the so-called radiative

conductivity).

If the extinction coefficient is small, however, with

weak emission and absorption as found in some fluids,

heat transfer does only approximately correspond to the

governing equation of the transient hot-wire method. By

this an apparent thermal conductivity will be measured

and the application of correction terms has been sug-

gested for getting the true and radiation-free thermal

conductivity. Respective analytical investigations are
ed.

mail to: gross@iwtt.tu-freiberg.de


Nomenclature

cp heat capacity [J/kgK]

C constant, C ¼ ec ¼ 1:781
E extinction coefficient [1/m]

I radiation intensity [W/m2 sr]

J0;1, Y0;1 Bessel functions (1st and 2nd kind respec-
tively)

ka absorption coefficient [1/m]

ks scattering coefficient [1/m]

lm mean penetration length [m]

M number of discrete directions

N level number of the discrete ordinates method

n index of refraction

_q heat flux [W/m2]
_Ql heating power per unit length [W/m]

r radius [m]

s coordinate along path of radiation [m]

t time [s]

T temperature [K]

wi weights

Greek symbols

ai coefficients

bi roots

e emissivity

g, l, n direction cosines

j thermal diffusivity [m2/s]

k thermal conductivity [W/m K]

h polar angle

# temperature [�C]
q mass density [kg/m3]

r Stefan–Boltzmann constant

w azimuthal angle

X solid angle [sr]

Subscripts

b blackbody

c conductive

eff effective

m mean value

r radiative

s outer boundary of the sample

w hot wire

0 initial value
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reported, e.g., by Saito and Venart [2], Saito [3], Menashe

and Wakeham [4] and de Castro et al. [5] for radiation

effects upon transient hot-wire measurements of liquids.

The determination of the required critical minimum

of the extinction coefficient is only possible with the

numerical simulation of the measuring procedure. For

this purpose, Ebert and Fricke [6] solved the governing

energy equation of the combined conduction and radi-

ation problem by the method of successive approxima-

tion. For the boundary condition at the wire, the

authors neglected radiation emitted from the wire sur-

face. The radiation transport problem was solved by

application of the Milne–Eddington approximation

which only works accurately for optically thick media.

As the result, the authors found E ¼ 15; 000/m as the

lower limit of the extinction coefficient, which must be

exceeded for application of the diffusion model where

the effective thermal conductivity can be determined

from the hot-wire data.

In order to analyse this heat transfer process in more

detail and more accuracy, the radiation emitted from the

wire will be taken into account for the boundary con-

dition at the wire and the radiation transport equation

will be solved by means of the discrete ordinates method

which is suitable for both optically thick and optically

thin media, i.e. for high and for low extinction coeffi-

cients. The coupled differential equations for energy and

radiation transfer will then be solved numerically with

the finite difference method.
Onset of convection and related effects which are of

outstanding importance in case of fluids will not be

considered here as it plays a negligible role in porous

media.
2. The principle of transient hot-wire measurements

2.1. Fundamentals

The transient hot-wire method uses a thin electrically

heated wire immersed in the sample as a line source to

generate a transient temperature field in the measured

medium when a constant heating power is applied to the

wire. The fundamental differential equation governing

the line-source problem

qcp
oT
ot

¼ �r � �_qc ¼ r � ðkcrT Þ; ð1Þ

is subjected to boundary conditions

at t6 0 and any r DT ðr; tÞ ¼ 0; ð2Þ

at r ¼ rw and any tP 0
_Ql

2prw
¼ �kc

oT
or

� �
r¼rw

; ð3Þ

at r ! 1 and any tP 0 lim
r!1

DT ðr; tÞ ¼ 0 ð4Þ
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assuming

q ¼ const; cp ¼ const; kc ¼ const; ð5Þ

where T is the temperature, t the time, q the density, cp
the specific heat and kc the thermal conductivity of the
medium. For a sufficiently small radius of the wire rw
and long times t, i.e. for r2w=ð4jtÞ 	 1, the solution of

the Eqs. (1)–(4) can be obtained as follows [1]:

DT ¼
_Ql

4pkc
ln

4jt
r2wC

� �
; ð6Þ

where DT is the temperature rise of the wire, _Ql the

heating power per unit length, j the thermal diffusivity
of the medium, and C ¼ ec ¼ 1:781 with Euler’s con-
stant c. Measurements in liquids and gases are restricted
to very short times (in the order of some seconds) due to

onset of convection, and the criterion r2w=ð4jtÞ 	 1 can

only be met by using an extremely thin wire (typically

rw ¼ 5 lm and below). Application of the hot-wire

method to solids, however, requires a mechanically

stable wire with a radius ranging up to rw ¼ 250 lm, and
consequently much longer measuring times (typically up

to 600 s) are needed. In case of porous solids, the onset

of convection depends on pore structure (open or closed

pores and their size) and it is restricted to very high

temperature differences which are never attained in

practice.

Analytically, two temperatures T1 and T2 measured at
times t1 and t2, should be sufficient to get the thermal
conductivity, kc:

kc ¼
_Ql

4p
� ln t2 � ln t1

T2 � T1
: ð7Þ

Eq. (7) is used as the evaluation procedure of the tran-

sient hot-wire method and it works accurately in media

with exclusively conduction heat transfer.

2.2. Application to participating media

The combined conduction and radiation heat trans-

fer in transient hot-wire measurements is described by

the balance of energy:

qcp
oT
ot

¼ r � ðkcrT Þ � r � _qr; ð8Þ

including now the radiation term, r � _qr:

r � _qr ¼ ka 4rT 4
�

�
Z
4p
I dX

�
; ð9Þ

as the difference of emitted and absorbed radiation,

where _qr is the radiative flux, ka the absorption coeffi-
cient of the medium, r the Stefan–Boltzmann constant, I
the intensity of radiation and X the solid angle. Eq. (8) is
subjected to boundary conditions
at t6 0 and any r DT ðr; tÞ ¼ 0; ð10Þ

at r ¼ rw and any tP 0

_Ql

2prw
¼ �kc

oT
or

� �
r¼rw

þ _qr; ð11Þ

at r ¼ rs and any tP 0 DT ðrs; tÞ ¼ 0: ð12Þ

The problem of combined conduction and radiation

heat transfer deviates from the fundamentals of the line-

source technique because radiation terms are present in

Eq. (8), r � _qr, and in the boundary condition (11), _qr. In
order to use the solution (7) of the line-source technique

for evaluation of the measured results of conducting,

emitting and absorbing media, it is necessary that the

radiation term can be converted in such a way that Eqs.

(8) and (11) correspond to the respective expressions of

the fundamental line-source technique. This is possible

with the diffusion model by which the radiative heat flux,

_qr, can be rewritten as:

_qr ¼ �kr
oT
or

; ð13Þ

and divergence of the radiative heat flux, r � _qr, as:
r � _qr ¼ �r � ðkrrT Þ: ð14Þ

In Eqs. (13) and (14), kr is the radiative conductivity
defined by [7]:

kr ¼
16n2r
3E

� T 3r ; ð15Þ

where E is the extinction coefficient. For an absorbing
and emitting medium without scattering the extinction

coefficient, E, is equal to the absorption coefficient, ka.
Substituting Eq. (14) into (8) and Eq. (13) into (11) we get

qcp
oT
ot

¼ r � ðkeffrT Þ ð16Þ

and

_Ql

2prw
¼ �keff

oT
or

� �
r¼rw

; ð17Þ

respectively with keff ¼ kc þ kr as the effective thermal
conductivity of the conducting, emitting and absorbing

medium. It is quite obvious that the structure of Eqs.

(16) and (17) are identical with those of Eqs. (1) and (3)

respectively. With this similarity, measurements of the

effective thermal conductivity of conducting, emitting

and absorbing media by the transient hot-wire method

seems to be possible.

Before the method is actually used, we have to check

its applicability with respect to the validity of the diffu-

sion model. Although Eq. (16) holds for optically thick

media [7], Eq. (17) as the wire-side boundary condition

will cause errors as the diffusion model is not valid

close to some boundary of the medium [7,8]. It can be
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considered as an approximation for strongly absorbing

media. The at least necessary absorption coefficient can

only be determined by numerical simulation of the

transient hot-wire experiment.
3. Numerical analysis of the conduction–radiation problem

3.1. Assumptions of the model

With respect to the solubility of the combined pro-

cesses of conduction and radiation heat transfer, the

following assumptions are made:

(a) The medium is isotropic, homogeneous and infi-

nitely extended in axial direction. Thermal conduc-

tivity, kc, density, q, and specific heat, cp, of the
medium are constant, i.e. they do not depend on

temperature.

(b) The medium is bounded by two infinite coaxial cyl-

inders. The inner cylinder describes the hot-wire sur-

face with radius rw and the radius rs marks the
isothermal outside boundary of the sample at tem-

perature T0.
(c) The hot-wire surface is diffusely reflecting and has a

constant emissivity ew. The outer sample boundary is
black ðes ¼ 1Þ. The sample is every time in local ther-
mal equilibrium.

(d) The radiative heat transfer is free of inertia effects

and it can be described by the steady-state solution.

(e) The medium is gray and has constant IR-optical

properties, i.e. the absorption coefficient, ka, the scat-
tering coefficient, ks, and the index of refraction, n.

(f) At time t ¼ 0 the wire and the medium are isother-
mal at temperature T0.

3.2. Radiation transport equation

The conduction–radiation problem is governed by a

system of two equations, namely the energy balance, Eq.

(8), including the radiation term, Eq. (9), and the bal-

ance of monochromatic radiation passing through a

volume element, which contains an absorbing, emitting,

scattering and gray medium, written as [7]

dI
ds

¼~s � rI

¼ �ðka þ ksÞI þ kaIb þ
ks
4p

Z
4p
Ið~s0ÞUð~s �~s0ÞdX0: ð18Þ

The left side of Eq. (18) represents the gradient of

intensity in the direction of propagation, the right-hand

side includes, respectively, the attenuation of intensity

due to absorption and out-scattering, and the contri-

bution to the directional intensity due to emission by the

medium, and in-scattering from various directions ex-

pressed by the phase function Uð~s �~s0Þ.
Eqs. (8) and (18) are coupled due to the last term in

Eq. (9) which accounts for absorption of irradiated en-

ergy to be calculated from Eq. (18), and on the other

hand due to the emission term in Eq. (9) which depends

on the local temperature.

Eq. (18) forms the basis for all radiation calculations

and it can be written for axisymmetric cylindrical media

as

sin h cosw
oI
or

� sin h sinw
r

oI
ow

¼ �ðka þ ksÞI þ kaIb þ
ks
4p

Z
4p
Ið~s0ÞUð~s �~s0ÞdX0; ð19Þ

where the polar angle h is measured from the z-axis (i.e.
the symmetry axis), and the azimuthal angle w is

measured from the local radial direction. Introducing

the direction cosines, n ¼~s �~ez ¼ cos h, l ¼~s �~er ¼
sin h cosw, and g ¼~s �~ewc ¼ sin h sinw, we can rewrite
Eq. (19) as

l
r
oðrIÞ
or

� 1
r
oðgIÞ
ow

¼ �ðka þ ksÞI þ kaIb

þ ks
4p

Z
4p
Ið~s0ÞUð~s �~s0ÞdX0 ð20Þ

This equation has now to be solved by a proper method

which must be suitable for extensive parameter studies.

Due to the mathematical complexity of cylindrical

geometry, only a few studies have been made. Saito and

Venart [2] used a modified integral method for solving

the differential equation of energy. However, the authors

calculated the radiative flux as an approximation from

the temperature distribution for the conduction case

that cannot consider sufficiently the interaction between

conduction and radiation. Menashe and Wakeham [4]

solved numerically the full integro-partial differential

equation governing the simultaneous conduction–radi-

ation process in a transient hot-wire cell for the char-

acteristics of liquids. Ebert and Fricke [6] applied the

Milne–Eddington approximation for the radiation

transport, the application of which however, is limited to

very high absorption coefficients. Yu et al. [9] solved the

full integro-differential energy equation numerically with

the control volume method.

In order to carry out extensive parameter studies for

analysing the radiation effect in transient hot-wire

measurements, it is necessary to apply a method for the

solution of the radiation transport equation which is fast

enough and sufficiently accurate. For this purpose, the

discrete ordinates method has been selected.

3.3. Application of the discrete ordinates method

In the discrete ordinates method, Eq. (20) is solved

with a finite number of directions spanning the total

solid angle of 4p steradians. This number of directions



U. Gross, L.-T.-S. Tran / International Journal of Heat and Mass Transfer 47 (2004) 3279–3290 3283
depends on the order of the discrete ordinates approxi-

mation, expressed by the relationship M ¼ NðN þ 2Þ,
where N represents the order of approximation (i.e. the
number N of values for the direction cosines to be

considered within the range ±1.0). Therefore, this

method is also known as SN -approximation. The angu-

lar integral is evaluated by application of the numerical

quadrature. Each discrete direction ~si is depicted as a
point on the surface of a unit sphere with which a sur-

face area wi is associated. wi can be treated as the

angular quadrature weight, with the requirementX
i

wi ¼ 4p: ð21Þ

Eq. (20) may then be written in discrete ordinates form

as

li

r
oðrIiÞ
or

� 1
r
oðgiIiÞ
ow

¼ �ðka þ ksÞIi þ kaIb

þ ks
4p

Z
4p
Ii0Uð~s �~s0ÞdX0; ð22Þ

where i ¼ 1; 2; . . . ;M . The angular derivation term in

Eq. (22) can be simplified by using the direct-differencing

technique proposed by Carlson and Lathrop [10]. By

this the second term on the left-hand side of Eq. (22) can

be rewritten as

1

r
oðgiIiÞ
ow

¼ aiþ1=2Iiþ1=2 � ai�1=2Ii�1=2
rwi

: ð23Þ

The directions i� 1=2 define the edges of the angular
range of wi, the two terms representing, respectively, the

flow out of and into the angular range. A direct rela-

tionship between ai and wi can be drawn on the basis of

isotropic radiation

aiþ1=2 � ai�1=2 ¼ wi
ogi

ow
¼ wili; ð24Þ

where a1=2 ¼ 0 and aMþ1=2 ¼ 0.
Assuming the scatter to be linearly anisotropic, the

phase function may be represented by [11]

Uð~s;~s0Þ ¼ 1þ a1lili0 ; ð25Þ

where a1 is an anisotropic factor.
Multiplying both sides of Eq. (22) by 2prdr, and

integrating along the radial extention from rj to rjþ1, we
obtain

liðAjþ1Ii;jþ1 � AjIi;jÞ � ðAjþ1 � AjÞ



aiþ1=2I0iþ1=2 � ai�1=2I0i�1=2

wi

¼ �Bðka þ ksÞI0i þ BkaI0b þ BksI0s ; ð26Þ

where Aj ¼ 2prj, B ¼ pðr2jþ1 � r2j Þ, I0s ¼ 1
4p

P
i0 wi0 I0i0 ð1þ

a1lili0 Þ and the quantities with the superscript 0 denote
values at the center of the range from rj to rjþ1, i.e.
jþ 1=2. The intensity at this point, I0i , is related to the
intensities Ii;j and Ii;jþ1 at the boundaries, j and jþ 1, by

I0i ¼ ðIi;j þ Ii;jþ1Þ=2: ð27Þ

The intensity I0i is related to the intensities I0i�1=2 and
I0iþ1=2 at the angular edges i� 1=2 and iþ 1=2 by

I0i ¼ ðI0i�1=2 þ I0iþ1=2Þ=2: ð28Þ

The evaluation of Eq. (26) is performed from r ¼ rs to
r ¼ rw (i.e. inwards) for li < 0 and from r ¼ rw to r ¼ rs
(i.e. outwards) for li > 0 as described in the following.

li < 0 (inward calculation)

Eliminating Ii;j and I0iþ1=2 from Eq. (26) by utilizing

the relations given by Eqs. (27) and (28), we obtain

I0i ¼
liAIi;jþ1 þ CI0i�1=2 � BðkaI0b � ksI0s Þ

liAþ C � Bðka � ksÞ
; li < 0; ð29Þ

where A ¼ Aj þ Ajþ1, C ¼ ðAjþ1 þ AjÞ
aiþ1=2þai�1=2

wi
.

li > 0 (outward calculation)

Eliminating Ii;jþ1 and I0iþ1=2 from Eq. (26) by utilizing
the relations given by Eqs. (27) and (28), we obtain

I0i ¼
liAIi;j � CI0i�1=2 þ BðkaI0b � ksI0s Þ

liA� C þ Bðka � ksÞ
; li > 0; ð30Þ

Considering the two boundary surfaces to be diffusely

emitting–reflecting, the boundary condition for the

above Eq. (19) can be expressed in discrete ordinates

form as

at r ¼ rw : Ii ¼ ewIb;w þ
1� ew

p

X
i0

wi0 jli0 jIi0 ;

ðli > 0; li0 < 0Þ; ð31Þ

at r ¼ rs : Ii ¼ esIb;s þ
1� es

p

X
i0

wi0 jli0 jIi0 ;

ðli < 0; li0 > 0Þ: ð32Þ

The evaluation of Eqs. (29) and (30) requires an initial

value of the intensity I01=2. This value may be found by
solving Eq. (22) in the direction, where the angular

derivative vanishes, i.e. g ¼ 0. With an assumed intensity
distribution at an arbitrary point rj (or rjþ1), the inten-
sities I0i at the center of the range ðrj; rjþ1Þ can be eval-
uated, with which the intensity distribution at the next

point rjþ1 (or rj) can be calculated.
Finally, the divergence of the radiative heat flux

which is necessary for solving the energy equation (8)

may be approximated by

r � _qr � ka 4rT 4
 

�
X
i

wiIi

!
: ð33Þ
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Fig. 1. Deviation of IFD-solution (without radiation term for

conduction case) and S4-solution (with radiation term and a

very high extinction coefficient like a conduction case) from the

exact solution [12].
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For the one-dimensional cylindrical medium with sym-

metry conditions, we have

Iðr; h;wÞ ¼ Iðr;�h;wÞ ¼ Iðr; h;�wÞ: ð34Þ

Therefore, the intensity is the same for positive and

negative values of n, as well as for positive and negative
values of g. Thus, we only need to consider positive
values of ni and gi, leading to M ¼ NðN þ 2Þ=4 different
ordinates, with quadrature weights w00

i ¼ 4wi.

3.4. Numerical solution

Eq. (8) for the transient temperature field around the

heated wire and Eqs. (29) and (30) for the steady-state

radiation transfer are solved numerically by the implicit

finite difference method (IFD). In order to reduce the

calculation time maintaining a sufficiently high accu-

racy, the one-dimensional cylindrical geometry is di-

vided into concentric cylinders ðr0; r1; . . . ; rJ Þ with a
progressive size of the elements ðrjþ1 ¼ rj � U ; U > 1Þ.
In this way, we get a fine grid of points close to the wire,

where large gradients of temperature and intensity exist.

With an assumed radiative source term, r � _qr, and
knowing the actual temperature distribution within the

medium, the temperature distribution at the respective

next time step is calculated by Eq. (8), and from the

obtained temperature field the radiation field can be

updated by Eqs. (29) and (30). This iteration runs until

the temperature difference between two consecutive

iterative steps is less than some limiting value specified

by an accuracy parameter.

Several SN quadratures have been tested. Finally, we

decided to use the S4 that provides sufficiently high

accuracy and requires the smallest calculation time.

3.5. Validity tests with the numerical solution

The numerical solution of the conduction–radiation

problem has been tested for the limiting cases of an

extremely high and a zero extinction coefficient. These

accuracy tests were carried out with the following

parameters: kc ¼ 0:0346 W/m K, qcp ¼ 135:2
 103
J/m3 K, rw ¼ 0:25
 10�3 m, rs ¼ 0:05 m, ew ¼ 0:1; 1:0,
_Ql ¼ 1:0 W/m.
For assessing the accuracy of the numerical-solution

method, it is desirable to use an analytical solution to

the problem as a reference. The only analytical solution

which is available is that for vanishing radiative transfer

which means the extinction coefficient E goes to infinite
(opaque limit) as given by [12]

DT ðr; tÞ ¼
_Ql

2pkc
ln

rs
r

� 	
þ

_Ql

2kcrw

X1
i¼1
expð�jb2i tÞ


 J 20 ðrsbiÞ½J0ðrbiÞY1ðrwbiÞ � Y0ðrbiÞJ1ðrwbiÞ�
bi½J 21 ðrwbiÞ � J 20 ðrsbiÞ�

;

ð35Þ
where bi are roots of J1ðrwbiÞY0ðrsbiÞ � Y1ðrwbiÞ

J0ðrsbiÞ ¼ 0.
In order to compare the numerical solution with that

of Eq. (35), we carry out two calculations. The first one

delivers an exact numerical solution and it can be ob-

tained by application of boundary conditions, Eqs. (10)–

(12), to Eq. (8) and setting _qr ¼ 0. The result has been
compared with Eq. (35) and the difference is found to be

less than 0.15% in the entire range of times 1–600 s, and

less than 0.05% in the experimentally interesting range

100–600 s (see Fig. 1). By this the high accuracy of the

applied IFD-method, the kind of grid and time step is

clearly confirmed (Fig. 1).

As the second test, Eqs. (8), (29) and (30) have been

solved with a very large value of the extinction coeffi-

cient, E ¼ 1; 000; 000=m, which delivers the discrete

ordinates solution of the combined conductive and

radiative heat transfer. The difference between this S4-

approximation and the analytical solution is also found

to keep below 0.15% and 0.05% respectively (Fig. 1).

A further test of the numerical solution of the com-

bined conduction and radiation heat transfer can be

made at the other limit of the extinction coefficient, i.e.

the transparency limit (E ¼ 0). In the case of transpar-
ency, the radiative contribution to the heat flux may be

evaluated independently of the conductive heat transfer,

because the medium does not participate and there is a

direct radiative exchange between the surfaces of the

wire and of the outer boundary of the sample. The

radiative heat flux at r ¼ rw depends only on the tem-
peratures and the emissivities of both surfaces, and is

expressed as [7]

_qrðrwÞ ¼
rðT 4w � T 4s Þ

1

ew
þ rw

rs

1

es
� 1

� � : ð36Þ

The numerical solution, in this case, is obtained from

Eq. (8) by setting r � _qr ¼ 0 and substituting the radia-
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tive heat flux determined by Eq. (36) into the boundary

condition Eq. (11). The result is compared with the

numerical solution of the combined conduction–radia-

tion problem by solving Eqs. (8), (29) and (30), where

the extinction coefficient is set to zero ðE ¼ 0Þ. The
agreement is found to be very good with overall devia-

tions less then 0.001% in the time range 1–600 s.

At this point, we can conclude that the numerical

solution of the combined conductive and radiative heat

transfer using the discrete ordinates solution method for

the radiative transport is highly accurate in the limiting

cases of the extinction coefficient (E ¼ 0 and E ! 1).
By an additional test with the differential-approximation

method for solving the radiative transfer equation (see

[14]) which, however, can only be applied in cases of a

high extinction coefficient, good agreement is found with

the S4-approximation for E > 5000/m (#0 ¼ 25 �C) and
E > 10; 000/m (#0 ¼ 500 �C).
4. Results and discussions

4.1. Time-dependent temperature rise of the hot wire

As an example for the numerical simulation of hot-

wire experiments, the time-dependent temperature rise

of the wire has been evaluated for various extinction

coefficients starting from thermal equilibrium at #0 ¼ 25
�C (further parameters as applied in the validity tests).
Fig. 2 shows the excess temperature vs. the logarithm of

time for a wire with the emissivity ew ¼ 0:1.
With the extinction coefficient E ! 1 we have the

limiting case of radiation exchange between the wire and

the medium next to it with a penetration length lm ¼ 0
m, i.e. both of the partners exhibit the same temperature

and there is no contribution due to radiation. This

corresponds to an exclusively conducting medium, and

the typical straight-line behaviour is obtained in Fig. 2

as well known from hot-wire experiments. When the
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Fig. 2. Time-dependent excess temperature of the hot wire (for

#0 ¼ 25 �C, _Ql ¼ 1 W/m, and ew ¼ 0:1).
extinction coefficient is being decreased starting from

E ¼ 1, the penetration length begins to arise from zero
and the process of radiation exchange starts to con-

tribute to the total heat transfer. The time-dependent

temperature rise of the wire is reduced due to this

additional cooling. This effect is clearly visible in Fig. 2,

where the slopes of the curves decrease when the

extinction coefficient is stepwise reduced from E ¼ 1 to

E ¼ 5000 . . . 1000 . . . 500 . . . 100/m corresponding to an

increase of the penetration length from lm ¼ 0 to
lm ¼ 0:2 . . . 1 . . . 2 . . . 10 mm. In course of this, the wire
comes into a radiation exchange with increasingly

adjacent parts of the sample, and the same holds for any

location inside the sample itself. Special conditions arise

for the radiation process close to the outer boundary

which is assumed to be a black emitter–absorber coming

also into a direct radiation exchange with increasing

parts of the sample. Simultaneously, the radiation

emitted by the sample per volume decreases with the

extinction coefficient (Eq. (15)) whereas the radiation

flux emitted by the outer boundary keeps constant. This

brings an increasing resistance to the total radiation. As

a result, the slope of the curves is modified with the

tendency to increase again when the extinction coeffi-

cient is reduced below E ¼ 500 . . . 100=m. In case of
E ¼ 10=m, e.g., the penetration length amounts to

lm ¼ 100 mm and a direct radiation exchange between
the wire and the outer boundary is obtained. Finally, if

E is reduced to zero, the sample itself does not any
longer participate, and the remaining difference between

the curves for E ¼ 0 and 1 is simply due to the direct

radiation exchange from the wire to the outer boundary.

4.2. Radial temperature profile

Fig. 3 shows radial profiles of the excess temperature

for E ¼ 100/m and 10,000/m respectively. Results have
been evaluated for two types of the wire, one with low

emissivity ew ¼ 0:1 and one corresponding to a black
body. In the core of the sample surrounding the heated

wire, a logarithmic temperature profile is obtained which

is well known for the case of unsteady-state conduction.

This core region expands from one time step to the next

along with the rising local temperatures, which are

found to be higher for the larger extinction coefficient

due the reduction of radiation exchange. The effect of

the wire emissivity upon the temperature profile is small

especially for large extinction coefficients where the

radiation exchange is small. For E ¼ 100/m, however, at
short times an enhanced cooling effect can be seen for

ew ¼ 1:0, which seems to disappear after, maybe, 600 s.

4.3. Radial distribution of the radiative flux

The radial distribution of the radiative flux within the

sample is plotted in Figs. 4 and 5 depending on various
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parameters. Fig. 4a shows results for #0 ¼ 25 �C and
E ¼ 100/m at three different times. For such a small

extinction coefficient and at such a short time after

starting the numerical experiment, the radiative emission

from the medium is generally low. If the wire has a high

emissivity (ew ¼ 1, see the full circles and triangles), the
profile of radiative flux is similar to the transparency (i.e.

nonparticipating) case, where it decreases inversely with

the radius. For low emissivity of the wire (ew ¼ 0:1, see
the empty circles and triangles), the overall radiative

heat flux is extremely small, because both the wire and

the medium radiate very weak.

For larger times, e.g., for 600 s, the radiative-flux

profile is influenced by the time-dependent temperature

variations where not only the wire itself but also wide

ranges of the adjacent sample show enhanced tempera-

tures and emission of radiation, too. Due to the large

penetration length, radiation originating from a big

volume is being emitted evenly in all directions––also

backward to the wire which, being a black body in case

of ew ¼ 1, has to absorb all the irradiated energy. The
balance is found to be negative (see Fig. 4a) at long

times especially for ew ¼ 1 and in a reduced extend for
ew ¼ 0:1 too. Due to this, a maximum of the radiative
flux is obtained at a distance from the wire surface which

is something smaller than the penetration length. Out-

side this range, i.e. at a larger radius, this effect dis-

appears. Of course, the first and second laws of

thermodynamics require a respective enhancement of

the conduction heat transfer from the wire in cases of a

negative radiation flux, which indeed has been received
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in such situations (for this, see [14]). These phenomena

clearly show the non-diffusive character of the radiation,

especially close to the wire.

For a higher value of the extinction coefficient,

E ¼ 10; 000/m, the negative radiative flux vanishes, as
shown in Fig. 4b, because the mean penetration distance

is very small in this case. Only the radiation of a very

small region close the wire can reach the wire in the

negative direction, and the total radiation energy from

the sample to the wire is also very small. It is slightly

influenced by the emissivity of the wire and a maximum

radiation flux is obtained at a distance of about 0.1 mm

from the wire surface which exactly corresponds to

the penetration length. In this case the radiation

heat transfer becomes much more diffusively than for

E ¼ 100/m.
In the high temperature range the radiation flux is

strongly increased according to the Stefan–Boltzmann

law. Fig. 5a shows numerical results for #0 ¼ 500 �C and
E ¼ 100/m. In this case the wire and also the adjacent
parts of the sample have high temperatures. Both of

them are very active emitters and the resulting radiative

flux is much higher than at #0 ¼ 25 �C (see Fig. 4a) with
only positive values, i.e. it is exclusively directed away

from the wire. Again there is a radiative-flux decrease

with time near the wire and also a strong wire-emissivity

effect. The radiative flux distribution for the extinction

coefficient E ¼ 10; 000/m, shown in Fig. 5b, looks like
the one at low temperature #0 ¼ 25 �C, but the influence
of the wire emissivity is stronger. The radiative heat

transfer stays still far from being a diffusive process.

4.4. Time-dependent radiative flux

Due to the principle, the temperature of the heated

wire is caused to increase during the experiment and

with it, the radiative heat flux at the wire must increase if

the radiative heat transfer is a diffusive one. Fig. 6a

shows radiative-flux transients at the wire for #0 ¼ 25 �C
and ew ¼ 0:1. For small extinction coefficients (E ¼ 100/
m, 1000/m) the radiative heat flux initially shows an

increase, but after passing through a maximum at 12

and 3 s respectively it decreases due to the transient

radiation effects described above. The minimum extinc-

tion coefficient which is required for a monotonic in-

crease of the radiative heat flux amounts to E ¼ 10; 000/
m for #0 ¼ 25 �C and even E ¼ 100; 000/m for #0 ¼ 500
�C (see Fig. 6b).
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4.5. Derivation of the effective thermal conductivity

For assessing the accuracy of a numerical hot-wire

experiment the effective thermal conductivity gained

from the evaluated time-dependent temperature rise of

the wire (using Eq. (7)) has to be compared with the

effective thermal conductivity calculated as the sum

of the pure thermal conductivity and the radiative

conductivity derived from the Rosseland diffusion

model:

kapp;measure ¼
Q
4p

� ln t2 � ln t1
T2 � T1

¼? kapp;diff ¼ kc þ
16r
3E

T 3r :

The temperatures, T1 and T2, are taken for the time
interval between t1 ¼ 120 s and t2 ¼ 600 s which is typ-
ical for actual practice. For the radiation temperature,

Tr, the initial temperature, T0 ¼ #0 þ 273:15 K, is used
here, and the reference temperature of the measured

thermal conductivity must also be T0.
The deviation between both values of the effective

thermal conductivity

kapp;measure � kapp;diff
kapp;diff

� 100%

is plotted vs. the heating power per unit length in Fig. 7

for three different temperatures with the extinction

coefficient and wire emissivity as the parameters. The

deviation is found to increase linearly with the heating

power starting from the negative (i.e. an underdeter-

mination of the effective thermal conductivity) for all of

the three temperatures investigated, and a strong influ-

ence of the emissivity is found if the extinction coefficient

keeps below E ¼ 5000/m (for #0 ¼ 25 �C, see Fig. 7a).
For the higher temperatures (Fig. 7b and c) respective

limits are found to be around E ¼ 50; 000/m. In addi-
tion, the large influence of the emissivity of the wire

observed in these cases means a dependence of the

measured results on the measurement arrangement

bringing measured results which are not really properties

of the sample.

The negative deviations vanish for very large values

of E. That means, we should use the hot-wire method
only for measuring samples with a large enough E. The
linear relationship between the measured effective ther-

mal conductivity and the heating power per unit length

observed in experiments [13] are confirmed by calculated

results of this work, as shown in Fig. 7. The true value of

the effective thermal conductivity can be obtained by

extrapolation of the line of linear relationship to zero

heating power per unit length. Measurements of sample

with low E will, however, deliver the true thermal con-
ductivity only when a large enough heating power is

supplied. This may lead to the opinion that hot-wire

measurements are also possible for low values of E. The
measured results, however, are dependent on the mea-
surement arrangement and they are not physical prop-

erties of the sample.

In actual practice, one usually uses the mean tem-

perature as reference for the measured thermal

conductivity. Fig. 8 shows that for samples with a suf-

ficiently large extinction coefficient, depending on the

temperature, the mean temperature averaged from the

temperatures of the wires at two measurement points,

T1, and T2, can be used as reference temperature without
obtaining any heating power effect.
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5. Conclusions

The finite difference method is a convenient method

for solving the equations of heat transfer in absorbing

and emitting media. With the discrete-ordinates method

the radiation-transfer equation can be easily solved so

that the numerical simulation is suitable for extensive

parameter studies and the influence of radiation on

measurements of thermal conductivity in case of the hot-

wire method can be studied efficiently. The extinction

coefficient of the sample is a very important parameter
for the accuracy of measurement, and it brings an un-

derdetermination of the thermal conductivity if it is too

small. The range of extinction coefficients, in which

thermal conductivity can be measured accurately, shifts

to larger values when the measurement temperature in-

creases. Here are some examples of the recommended

range of the extinction coefficient derived from the cal-

culated results:

for #0 ¼ 25 �C: EP 10; 000/m
for #0 ¼ 500 �C: EP 50; 000/m
for #0 ¼ 1000 �C: EP 100; 000/m

Results of the numerical simulation confirmed the

linear relationship between the measured effective ther-

mal conductivity and the heating power observed in

experiments. Extrapolation to the heating power zero

allows for the determination of the thermal conductivity

if the initial temperature is chosen as the reference. This

method needs, however, several hot-wire measurements

and is, therefore, not efficient. Instead of this, one can

easily use the mean temperature as the reference for the

measured thermal conductivity.
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